Publications

Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1

Elife. 2013 Jun 18;2:e00324. doi: 10.7554/eLife.00324. Print 2013.

View Full Publication

Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.

PMID: 23795287

PMCID: PMC3687373

Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity

Blood. 2013 May 16;121(20):4242-9. doi: 10.1182/blood-2012-08-453043. Epub 2013 Mar 8.

View Full Publication

Corneal transparency is a prerequisite for optimal vision and in turn relies on an absence of blood and lymphatic vessels, which is remarkable given the cornea’s proximity to vascularized tissues. Membrane-bound vascular endothelial growth factor receptor 3 (VEGFR-3), with its cognate ligand vascular endothelial growth factor C (VEGF-C), is a major mediator of lymphangiogenesis. Here, we demonstrate that the cornea expresses a novel truncated isoform of this molecule, soluble VEGFR-3 (sVEGFR-3), which is critical for corneal alymphaticity, by sequestering VEGF-C. sVEGFR-3 binds and sequesters VEGF-C, thereby blocking signaling through VEGFR-3 and suppressing lymphangiogenesis induced by VEGF-C. sVEGFR-3 knockdown leads to lymphangiogenesis and hemangiogenesis in the mouse cornea, while overexpression of sVEGFR-3 inhibits lymphangiogenesis and hemangiogenesis in a murine suture injury model. Pax6+/− mice spontaneously develop corneal and lymphatic vessels and are deficient in sVEGFR-3. sVEGFR-3 suppresses hemangiogenesis by blocking VEGF-C–induced phosphorylation of VEGFR-2. Overexpression of sVEGFR-3 leads to a 5-fold increase in corneal transplant survival in mouse models. sVEGFR-3 holds promise as a molecule to control and regress lymphatic-vessel–based dysfunction. Therefore, sVEGFR-3 has the potential to protect the injured cornea from opacification secondary to infection, inflammation, or transplant rejection.

PMID: 23476047

PMCID: PMC3656456

Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration

ACS Nano. 2013 Apr 23;7(4):3264-75. doi: 10.1021/nn305958y. Epub 2013 Mar 20.

View Full Publication

Monthly intraocular injections are widely used to deliver protein-based drugs that cannot cross the blood-retina barrier for the treatment of leading blinding diseases such as age-related macular degeneration (AMD). This invasive treatment carries significant risks, including bleeding, pain, infection, and retinal detachment. Further, current therapies are associated with a rate of retinal fibrosis and geographic atrophy significantly higher than that which occurs in the described natural history of AMD. A novel therapeutic strategy which improves outcomes in a less invasive manner, reduces risk, and provides long-term inhibition of angiogenesis and fibrosis is a felt medical need. Here we show that a single intravenous injection of targeted, biodegradable nanoparticles delivering a recombinant Flt23k intraceptor plasmid homes to neovascular lesions in the retina and regresses CNV in primate and murine AMD models. Moreover, this treatment suppressed subretinal fibrosis, which is currently not addressed by clinical therapies. Murine vision, as tested by OptoMotry, significantly improved with nearly 40% restoration of visual loss induced by CNV. We found no evidence of ocular or systemic toxicity from nanoparticle treatment. These findings offer a nanoparticle-based platform for targeted, vitreous-sparing, extended-release, nonviral gene therapy.

PMID: 23464925

PMCID: PMC3634882 

Development of a novel bioerodible dexamethasone implant for uveitis and postoperative cataract inflammation

J Control Release. 2013 Apr 10;167(1):53-9. doi: 10.1016/j.jconrel.2013.01.007. Epub 2013 Jan 13.

View Full Publication

Delivery of anti-inflammatory steroids concurrently to both anterior and posterior segments of the eye is a challenge. The anterior ocular structures limit topical delivery. Injection can be disproportionately and repeatedly invasive and selective for only one ocular hemisphere. We developed a novel implant that can compensate for the limited conveyance of topical medicine and reduce the repetitive invasiveness of injection from the capsular bag allowing dexamethasone (DXM) delivery to both the anterior and posterior chambers. To establish proof of concept, microparticles were prepared with PLGA [poly(d,l-lactide-co-glycolide), 50:50, MW. 7000-17000], hydroxypropyl methyl cellulose (HPMC), and DXM by oil-in-water emulsion/solvent evaporation technique. Zeatsizer Nano and SEM (scanning electron microscopy) results showed microspheres in the range of 8±1µm. The target load of DXM in the microparticles was ~20.0% with a % recovery of 99.9% (w/w). Dose related pharmacokinetics with near zero order kinetics was observed for up to 6 weeks in rabbits with intracapsular bag implants. DXM flow was bidirectional from the endocapsular space and significant concentrations were found in the anterior and posterior chambers after up to 6 weeks. Whereas, with topical drops the exposure was minimal in all the ocular tissues with greater systemic exposure. Intraocular pressure was normal in all of the study groups; slit lamp biomicroscopy examinations revealed that no cells or fibrin formation in the anterior and posterior chamber with implants but flare, cells and fibrin was present in the topical drops group. Histological examination revealed normal tissues and no signs of inflammation in all the groups. The implant did not migrate to the center of the eye or obstruct the visual axis. We believe these findings demonstrate the feasibility of drug delivery from the capsular bag to the anterior and posterior segments effectively compared to topical alternatives.

Copyright © 2013 Elsevier B.V. All rights reserved.

Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR)

FASEB J. 2013 Jan;27(1):76-85. doi: 10.1096/fj.12-213835. Epub 2012 Sep 20.

View Full Publication

The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5′ splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.

PMID: 22997228 

PMCID: PMC3528308

Gene delivery nanoparticles fabricated by supercritical fluid extraction of emulsions

Int J Pharm. 2010 Mar 15;387(1-2):278-85. Epub 2009 Dec 16. Mayo AS, Ambati BK, Kompella UB.

View Full Publication

The KDR gene, which participates in angiogenesis and lymphangiogenesis, produces two functionally distinct protein products, membrane-bound KDR (mbKDR) and its isoform, soluble KDR (sKDR). Since sKDR does not have a tyrosine kinase domain and does not dimerize, it is principally an antagonist of lymphangiogenesis by sequestering VEGF-C. Alternative polyadenylation of exon 30 or intron 13 leads to the production of mbKDR or sKDR, respectively, yet the regulatory mechanisms are unknown. Here we show that an antisense morpholino oligomer directed against the exon 13-intron 13 junction increases sKDR (suppressing lymphangiogenesis) and decreases mbKDR (inhibiting hemangiogenesis). The latent polyadenylation site in intron 13 of KDR is activated by blocking the upstream 5′ splicing site with an antisense morpholino oligomer. Intravitreal morpholino injection suppressed laser choroidal neovascularization while increasing sKDR. In the mouse cornea, subconjunctival injection of the morpholino-inhibited corneal angiogenesis and lymphangiogenesis, and suppressed graft rejection after transplantation. Thus, this morpholino can be used for concurrent suppression of hemangiogenesis and lymphangiogenesis. This study offers new insight into the mechanisms and potential therapeutic modulation of alternative polyadenylation.

PMID: 20025945

PMCID: PMC2830003

Related articles

Corneal transparency: genesis, maintenance and dysfunction

Brain Res Bull. 2010 Feb 15;81(2-3):198-210. Epub 2009 May 27. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK.

Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City 84132, UT, USA. yureeda.qazi@hsc.utah.edu

View Full Publication

Optimal vision is contingent upon transparency of the cornea. Corneal neovascularization, trauma and, surgical procedures such as photorefractive keratectomy and graft rejection after penetrating keratoplasty can lead to corneal opacification. In this article, we identify the underlying basis of corneal transparency and factors that compromise the integrity of the cornea. With evidence from work on animal models and clinical studies, we explore the molecular mechanisms of both corneal avascularity and its dysfunction. We also seek to review therapeutic regimens that can safely salvage and restore corneal transparency. Copyright 2009 Elsevier Inc. All rights reserved.

PMID: 19481138

Related articles

Anti-SPARC oligopeptide inhibits laser-induced CNV

Vision Res. 2009 Dec 22. Uehara H, Luo L, Simonis J, Singh N, Taylor EW, Ambati BK.

John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Dr., Salt Lake City, UT 84132, USA.

View Full Publication

It is known that SPARC gates VEGF-A signal transduction towards KDR, the primary angiogenic VEGF receptor. We sought to determine whether inhibition of SPARC activity using anti-SPARC peptide could inhibit laser-induced CNV by promoting binding of VEGF-A to FLT-1. We created anti-SPARC l-peptide and retro-inverso anti-SPARC d-peptide. Anti-SPARC peptides or PBS were injected intravitreally 1day before or after laser induction. Intravitreal injection of anti-SPARC l-peptide 1day before laser induction promotes FLT-1 phosphorylation and inhibited laser-induced CNV and anti-SPARC d-peptide had no effect. Injection 1day after laser injury did not affect size of laser-induced CNV. Inhibition of SPARC activity could be complementary to existing anti-CNV therapy. Copyright © 2009 Elsevier Ltd. All rights reserved.

PMID: 20005890

Related articles

Selectively Targeting Nanoparticles with Flt Anti-VEGF intraceptors can inhibit laser induced choroidal neovascularization

Singh S, Edelhauser H, Grossniklaus H, Ambati BK, Kompella U (2009) Selectively Targeting Nanoparticles with Flt Anti-VEGF intraceptors can inhibit laser induced choroidal neovascularization. Gene Therapy. 16: 645-59

View Full Publication

Choroidal neovascularization (CNV) leads to loss of vision in age-related macular degeneration (AMD), the leading cause of blindness in adult population over 50 years old. In this study, we developed intravenously administered, nanoparticulate, targeted nonviral retinal gene delivery systems for the management of CNV. CNV was induced in Brown Norway rats using a 532 nm laser. We engineered transferrin, arginine-glycine-aspartic acid (RGD) peptide or dual-functionalized poly-(lactide-co-glycolide) nanoparticles to target delivery of anti-vascular endothelial growth factor (VEGF) intraceptor plasmid to CNV lesions. Anti-VEGF intraceptor is the only intracellularly acting VEGF inhibitory modality. The results of the study show that nanoparticles allow targeted delivery to the neovascular eye but not the control eye on intravenous administration. Functionalizing the nanoparticle surface with transferrin, a linear RGD peptide or both increased the retinal delivery of nanoparticles and subsequently the intraceptor gene expression in retinal vascular endothelial cells, photoreceptor outer segments and retinal pigment epithelial cells when compared to nonfunctionalized nanoparticles. Most significantly, the CNV areas were significantly smaller in rats treated with functionalized nanoparticles as compared to the ones treated with vehicle or nonfunctionalized nanoparticles. Thus, surface-functionalized nanoparticles allow targeted gene delivery to the neovascular eye on intravenous administration and inhibit the progression of laser-induced CNV in a rodent model.

PMID:19194480 

PMCID: PMC2993697 

Targeted drug and gene delivery systems for lung cancer therapy

Clinical Cancer Research. 2009 Dec 1;15(23):7299-308. Epub 2009 Nov 17. Sundaram S, Trivedi R, Durairaj C, Ramesh R, Ambati BK, Kompella UB.

Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA.

View Full Publication

PURPOSE: To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone-releasing hormone (LHRH) agonist, and its combination in vivo with RGD peptide conjugated nanoparticles encapsulating an antiangiogenic, anti-vascular endothelial growth factor (VEGF) intraceptor (Flt23k; RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. EXPERIMENTAL DESIGN: The in vitro and in vivo efficacy of the deslorelin-docetaxel conjugate was evaluated in H1299 cells and xenografts in athymic nude mice. Coadministration of deslorelin-docetaxel conjugate and RGD-Flt23k-NP was tested in vivo in mice. Tumor inhibition, apoptosis, and VEGF inhibition were estimated in each of the treatment groups. RESULTS: The conjugate enhanced in vitro docetaxel efficacy by 13-fold in H1299 cells compared with docetaxel at 24 hours, and this effect was inhibited following reduction of LHRH receptor expression by an antisense oligonucleotide. Combination of the conjugate with the RGD-Flt23k-NP in vivo resulted in an 82- and 15-fold tumor growth inhibition on day 39 following repeated weekly i.v. injections and a single intratumoral (i.t.) injection, respectively. These effects were significantly greater than individual targeted therapies or docetaxel alone. Similarly, apoptotic indices for the combination therapy were 14% and 10% in the i.v. and i.t. groups, respectively, and higher than the individual therapies. Combination therapy groups exhibited greater VEGF inhibition in both the i.v. and i.t. groups. CONCLUSIONS: Docetaxel efficacy was enhanced by LHRH receptor-targeted deslorelin conjugate and further improved by combination with targeted antiangiogenic nanoparticle gene therapy. Combination of novel targeted therapeutic approaches described here provides an attractive alternative to the current treatment options for lung cancer therapy.

PMID: 19920099

PMCID: PMC2787834

Related Articles

Mediators of ocular angiogenesis

J Genet. 2009 Dec;88(4):495-515. Qazi Y, Maddula S, Ambati BK.

View Full Publication

Department of Ophthalmology, John Moran Eye Center, University of Utah, Salt Lake City, UT-84132, USA.
Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

PMID: 20090210

Related Articles

Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium

The FASEB Journal. 2009 Nov;23(11):3752-65. Epub 2009 Jul 16. Sundaram S, Roy SK, Ambati BK, Kompella UB.

Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.

Viw Full Publication

The objective of this study was to determine whether surface-modified nanoparticles enhance permeability across nasal mucosa, while retaining the effectiveness of the payload. The uptake and permeability of polystyrene nanoparticles (PS-NPs; FluoSpheres) were evaluated across the various regions of the bovine nasal epithelia following conjugation with deslorelin and transferrin. Uptake and transport of PS-NPs, deslorelin-PS-NPs, and transferrin-PS-NPs exhibited regional differences in the order: inferior turbinate posterior (ITP) > medium turbinate posterior (MTP) > medium turbinate anterior (MTA). Uptake and transport also exhibited directionality and temperature dependence in these tissues. Further, uptake, as well as transport of functionalized nanoparticles, could be inhibited by excess free functionalizing ligand. Confocal microscopy indicated the presence of functionalized nanoparticles in respiratory epithelial cells, as well as other cell types of the nasal tissue. We chose the ITP region for further studies with deslorelin or transferrin-conjugated poly-l-lactide-co-glycolide nanoparticles (PLGA-NPs) encapsulating an anti-VEGF intraceptor (Flt23k) plasmid. Transport of the nanoparticles, as well as the plasmid from the nanoparticles, exhibited the following order: transferrin-PLGA-NPs > deslorelin-PLGA-NPs > PLGA-NPs >> plasmid. The ability of the nanoparticles transported across the nasal tissue to retain the effectiveness of the Flt23k plasmid was evaluated by measuring transfection efficiency (percentage of cells expressing GFP) and VEGF inhibition in LNCaP and PC-3 prostate cancer cells. Transfection efficiencies and VEGF inhibition in LNCaP and PC-3 cells exhibited the following trend: transferrin-PLGA-NPs >or= deslorelin-PLGA-NPs > PLGA-NPs >> plasmid. Further, functionalized nanoparticles exhibited transfection efficiencies and VEGF inhibition significantly superior compared with the routinely used transfecting agent, lipofectamine. Formulating plasmids into nanoparticulate delivery systems enhances the transnasal delivery and gene therapy at remote target cancer cells, which can be further enhanced by nanoparticle functionalization with deslorelin or transferrin.

PMID: 19608628

PMCID: PMC2775002

Related Articles

The capsule drug device: Novel approach for drug delivery to the eye

Vision Research. 2009 Oct 23. [Epub ahead of print] Molokhia SA, Sant H, Simonis J, Bishop CJ, Burr RM, Gale BK, Ambati BK.

Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT 84132, United States.

Viw Full Pubication

Treatment of age-macular degeneration requires monthly intravitreal injections, which are costly and have serious risks. The objective of this study was to develop a novel intraocular implant for drug delivery. The capsule drug ring is a reservoir inserted in the lens capsule during cataract surgery, refillable and capable of delivering multiple drugs. Avastin((R)) was the drug of interest in this study. Prototypes were manufactured using polymethylmethacrylate sheets as the reservoir material, a semi-permeable membrane for controlled delivery and silicone check valves for refilling. The device showed near zero-order release kinetics and Avastin((R)) stability was investigated with accelerated temperature studies.

PMID: 19854210

Related Articles